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Abstract

Many social scientists theorize how various factors influence the dynamic process of network

evolution. These theories explain the ways in which nodal and dyadic characteristics play a

role in the formation and evolution of relational ties over time. We develop a dynamic model

of social networks by combining a Hidden Markov model with a mixed-membership stochastic

blockmodel that identifies latent groups underlying the network structure. Unlike existing mod-

els, we incorporate covariates that predict both the dynamic changes in the node membership

of latent groups and the direct formation of edges between dyads. Our motivating application

is the dynamic modeling of international conflicts. While most existing work assumes the de-

cision to engage in militarized conflict is independent across states and static over time, we

demonstrate that conflict patterns are driven by states’ evolving membership in geopolitical

coalitions. Changes in monadic covariates like democracy shift states between coalitions, gener-

ating heterogeneous effects on conflict over time and across states. The proposed methodology,

which relies on a variational approximation to a collapsed posterior, is implemented through an

open-source software package.
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1 Introduction

Social scientists often posit theories about the dynamic effects of latent groups of actors on relational

outcomes of interest over time. In studying interstate conflict, for example, international relations

scholars have examined the so-called “democratic peace” hypothesis, which states that blocs of

actors, defined by their underlying disposition toward democratic values, rarely engage in wars

amongst themselves (e.g., Maoz and Russett, 1993; Oneal and Russett, 1999). These social science

theories often define groups of similar actors that underlie the structures of social networks, and

stipulate how the formation and changes of these groups give rise to various actions and behaviors

(Lorrain and H. C. White, 1971).

To aid the empirical testing of these theories, we develop a dynamic model of social networks

that generalizes the mixed-membership stochastic blockmodel (MMSBM) originally proposed by

Airoldi et al. (2008). The MMSBM is a popular generalization of the stochastic blockmodel (SBM;

Wang and Wong, 1987; Snijders and Nowicki, 1997), which is a factor analytic model for network

data characterized by latent groups of nodes. Unlike the SBM, the MMSBM allows nodes to instan-

tiate different group memberships in their interactions with other nodes. Our proposed dynamic

mixed-membership stochastic blockmodel, which we call dynMMSBM, enables the memberships of

latent groups to evolve over time via a hidden Markov process while simultaneously incorporating

both dyadic and nodal attributes that affect the dynamic formation of groups and ties.

Thus, our approach frees applied researchers from the need to resort to inefficient, two-step

procedures to evaluate theories whereby memberships are first estimated, and then regressed on

covariates of interest (Wasserman and Faust, 1994). Furthermore, the proposed model allows

for prediction of group membership and future network ties of previously unobserved nodes. To

facilitate the application of our proposed model, we develop a fast Bayesian inference algorithm

by relying on a variational approximation to the collapsed posterior (Teh, Newman, and Welling,

2007). We offer an open-source software package, NetMix (available at https://github.com/

solivella/NetMix), so that applied researchers can easily implement the proposed model in their

own empirical analysis.

Our work builds upon the growing literature on dynamic modeling of social networks that

exhibit some degree of stochastic equivalence. In addition to the SBM, a variety of models are

generally available to accommodate such networks. For instance, the latent position cluster model

(Handcock, Raftery, and Tantrum, 2007) and the recently developed ego-ERGM (Salter-Townshend
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and Brendan Murphy, 2015) incorporate equivalence classes into the latent distance and the ERGM

models, respectively. Although the more flexible SBM (and all SBM-based models, such as ours)

can capture disassortative relationships that these other models have a harder time accommodating,

they all share the highly restrictive assumption that nodes play a single role in all their interactions.

Models like the overlapping/multiple-membership SBM (Latouche, Birmelé, Ambroise, et al.,

2011; Kim and Leskovec, 2013) or the mixed-membership SBM (MMSBM; Airoldi et al., 2008)

fully address this issue by allowing nodes to belong to multiple equivalence classes. Typically,

however, these models were limited by the fact that they imposed independence of group member-

ships over time and across nodes, as well as independence of dyads conditional on the equivalence

structure. This made it difficult to accommodate networks that displayed both stochastic equiva-

lence and some degree of heterogeneity across nodes (e.g. networks that had very skewed degree

distributions). Subsequent work therefore focused on relaxing some of these independence assump-

tions. For instance, (e.g. Sweet, Thomas, and Junker, 2014) incorporated dyadic covariates into

the MMSBM, thus allowing for connectivity patterns that where not exclusively the result of the

equivalence structure. And even more recently, A. White and Murphy, 2016 incorporated node-

specific attributes as predictors of the mixed-membership vectors, thus eliminating the assumption

that all nodes in an equivalence class where exchageable. We incorporate both of these ideas in our

own model, and allow for dyadic covariates at the edge-formation stage and for nodal predictors of

the mixed-membership vectors.

Even more attention has been devoted to relaxing the assumption of independence of networks

observed over time, resulting in important advances to apply the MMSBM in dynamic network

settings (e.g. Xing, Fu, and Song, 2010; Ho and Xing, 2015; Fan, L. Cao, and Da Xu, 2015). As most

social networks have a temporal dimension, being able to model the dynamic evolution of relational

outcomes is of paramount importance to applied researchers. However, while these models offer

flexible approaches to accounting for temporal dynamics, they often rely on continuous state space

approaches like the Kalman filter, making it difficult to periodize a network’s historical evolution.

Since applied researchers typically resort to periodizing history into distinct “epochs” in order to

make sense of a phenomenon’s evolution, more discrete approaches to network dynamics would

be better suited to the typical needs of social scientists. Accordingly, our model relies on an M -

state hidden Markov process to capture the evolution of equivalence class-based network formation.

Furthermore, by assuming that the blockmodel itself (i.e. the matrix of edge propensities across

and within latent classes) remains constant over time—so that only memberships into classes are
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allowed to evolve—we avoid issues of identification recently raised by Matias and Miele, 2017 that

affect some of the earlier dynamic MMSBM specifications.

To the best of our knowledge, then, our model is the first to tackle both the need to incorporate

dyadic and nodal attributes and the need to account for temporal dynamics simultaneously, in an

effort to yield a tool of maximal use to applied researchers.

The development of our model is motivated by the dynamic analysis of international conflicts

among states over the last two centuries. Political scientists have long sought to explain the causes

of interstate conflict and predict its outbreak. A prominent literature on the “democratic peace,”

for example, explores whether democratic political systems depress the rate of conflict among states.

While many scholars provide evidence that democratic dyads are more peaceful than other pairs of

states (Maoz and Russett, 1993; Oneal and Russett, 1999; Ray, 1998; Dafoe, 2011), others argue

that the democratic peace was limited to a specific era when alliance patterns were highly correlated

with democracy (Farber and Gowa, 1997; Gowa, 2011). The attribution of peaceful relations to

democracy therefore depends on whether democratic political systems encourage states to enter

the same geopolitical coalition — a question our model is designed to address.

When analyzing conflict data, the most common methodological approach is to assume the

conditional independence of state dyad-year observations given some covariates within the general-

ized linear model framework (e.g., Maoz and Russett, 1993; Gleditsch and Hegre, 1997; Farber and

Gowa, 1997; Mansfield and Snyder, 2002; Gartzke, 2007; Goldsmith, 2007; Mousseau, 2009; Gowa,

2011; Dafoe, Oneal, and Russett, 2013). Recent analyses, however, have turned to network models

to relax this conditional independence assumption. Maoz, Kuperman, et al. (2006), for instance, use

a measure of structural equivalence among dyads as a covariate of the standard logistic regression.

Hoff and Ward (2004) employ random effects designed to explicitly model network dependence in

dyadic data. Ward, Siverson, and X. Cao (2007) apply the latent space model developed by Hoff,

Raftery, and Handcock (2002) to international conflict. Cranmer and Desmarais (2011) propose

and apply a longitudinal extension of the exponential random graph model (ERGM) to conflict

data. We build on this emerging body of scholarship that seeks to model complex dependencies in

the conflict network.

Our proposed model offers important advantages over previous analytic strategies for studying

the dynamic evolution of international conflicts. First, the proposed dynMMSBM is a natural ap-

proximation to the dynamic process of sorting states into geopolitical coalitions that shapes conflict

behavior and characterizes distinctive periods in the history of international relations. These evolv-
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ing coalitions often interact in unexpected ways that researchers find difficult to specify a priori.

For example, although interstate conflicts during the Cold War are characterized by the overar-

ching contest between the Eastern and Western blocs, the leading states in these coalitions rarely

engaged directly in conflict. Instead, they clashed in a series of proxy wars among other states. Our

model accommodates group-based relationships like these via heterogeneous edge formation among

latent groups. We also embed nodal covariates directly into the sorting process, allowing monadic

variables like regime type and military power to predict how states shift between coalitions over

time. Such an analysis can provide theoretical insights that are difficult to obtain if one separately

estimates network dependencies and covariate effects. Finally, the dynamic implementation allows

the model to adjust to possibly discontinuous changes in the international system over time.

2 The Interstate Conflict Network

The study of interstate conflict is of great practical and theoretical interest to international relations

scholars and policy makers. Practically, the ability to predict violent political clashes has attracted

a large and growing literature on conflict forecasting (e.g., Schrodt, 1991; Beck, King, and Zeng,

2000; Ward, Metternich, et al., 2013; Chadefaux, 2014; Hegre et al., 2017). Theoretically, scholars

have sought to understand how specific political institutions, processes, and power asymmetries

affect war and peace among states (e.g., Barbieri, 1996; Oneal and Russett, 1999; Oneal and Tir,

2006; Hegre, 2008; Maoz, 2009).

Empirical studies of interstate conflict are most commonly conducted at the level of the state

dyad-year. In these analyses, dyad-year observations are typically assumed to be independent

conditional on the covariates included in the model (e.g., Maoz and Russett, 1993; Farber and

Gowa, 1997; Mansfield and Snyder, 2002; Goldsmith, 2007; Mousseau, 2009; Gowa, 2011; Dafoe,

Oneal, and Russett, 2013). However, there are strong reasons to believe conflict patterns violate

this assumption. For centuries, states have actively managed conflict by constructing formal and

informal coalitions. Alliances, for example, affect the probability of conflict both among allied states

and between allies and non-allies. Many militarized conflicts (most notably, the World Wars) are

multilateral in nature: states do not decide to engage in conflict as a series of disconnected dyads,

but are drawn into war or maintain peace as a result of their membership in preexisting groups.

To address this cross-sectional and temporal dependency, we propose a network model of interstate

conflict that acknowledges the tendency of states to sort into geopolitical coalitions. In our model,

which we call dynMMSBM and describe in detail in Section 3, nodal attributes influence the
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formation of unobserved groups, and the effect of these attributes can vary over time, depending

on which “epoch” of history the interaction takes place in.

We use the dynMMSBM to examine the onset of militarized disputes among 164 states in

the years 1816–2010. To measure conflict, we draw on version 4.1 of the Militarized Interstate

Dispute (MID) dataset (Ghosn and Bennett, 2003). A MID occurs when one state enages in an

government-sanctioned “threat, display or use of military force” against “the government, official

representatives, official forces, property, or territory of another state” (Jones, S. A. Bremer, and

Singer, 1996, p. 168). The onset of a MID is a relatively rare event, occuring in approximately

0.5% of the 625,134 state dyad-year observations in our sample.

In defining the structural components of the dynMMSBM, we begin with the standard speci-

fication used in the literature on the democratic peace. This research agenda is among the most

prominent theoretical debates in the study of interstate conflict, and it explores whether democra-

cies engage in conflict at lower rates than other regime types. While recent network applications

have re-examined the democratic peace debate (e.g., Hoff and Ward, 2004; Ward, Siverson, and X.

Cao, 2007; Cranmer and Desmarais, 2011), the dynMMSBM offers several distinct advantages. By

allowing democracy to shape the formation of latent groups, the proposed model closely mirrors

the theoretical mechanism often cited by democratic peace theorists. Specifically, according to

the theory, democracies represent a distinct community of states that have achieved a “separate

peace” among themselves. The dynMMSBM could reveal such a community by identifying a latent

group that exhibits low rates of intra-group conflict and that democratic states are more likely to

join. The model also allows for the possibility of a similar “dictatorial peace” among autocratic

states, as argued by Peceny, Beer, and Sanchez-Terry (2002). The direct inclusion of nodal vari-

ables also obviates the need to restructure monadic covariates to fit a dyadic dataset, which has

exacerbated a debate in the democratic peace literature regarding the appropriate dyadic specifi-

cation of democracy (see Dafoe, Oneal, and Russett, 2013). Finally, the dynamic implementation

provides flexibility for the effect of democracy to vary over time, as hypothesized by Farber and

Gowa (1997).

3 The Proposed Methodology

In this section, we describe the proposed methodology. We begin by defining the model and then

derive a fast estimation algorithm based on variational approximation.
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3.1 The Dynamic Mixed-Membership Stochastic Blockmodel

Suppose that we observe a social network as graph Gt(Vt, Et) for each time period t ∈ {1, . . . , T}

where Vt and Et represent a set of nodes and that of directed edges, respectively. We consider the

case of undirected networks later in this section. We allow each node set Vt to possibly vary over

time since nodes may enter and exit the network at different points in time. For example, in our

application, some countries are born into or disappear from the international system during the

study period. We use Nt to denote the number of nodes in Vt, i.e. Nt = |Vt|.

For each ordered pair of nodes p and q in Vt, we define an outcome variable Ypqt = 1 if there is

an edge from p to q in Gt, i.e., (p, q) ∈ Et, and Ypqt = 0 otherwise. Accordingly, we can form an

Nt × Nt sociomatrix Yt with typical element Ypqt. In addition, we also observe a Jx-dimensional

vector of time-varying covariates for each node, denoted by xpt for node p at time t, as well as a

Jd-dimensional vector of time-varying covariates for each dyad, denoted by dpqt for dyad (p, q) at

time t.

Like the SBM, the MMSBM makes the relational outcomes Ypqt a function of K latent groups

to which nodes belong. The key distinctive feature of the MMBSM, however, is that while a

node can belong to a latent group when interacting with the other node of a given dyad, different

groups may be instantiated by the same node in other relationships and depending on whether it is

playing a role of sender or receiver. With the addition of a time dimension, this mixed membership

framework can be taken one step further by allowing a node to belong to different latent groups

across time periods even when it is interacting with the same node in the same role (either as a

sender or a receiver). Formally, we define a K-dimensional indicator vector zp→q,t (wq←p,t) whose

kth element zp→q,t,k (wq←p,t,k) is equal to one if node p (q) instantiates group k when interacting

with node q (p) as a sender (receiver).

As in the standard MMSBM, the group-by-group propensities of edge formation can be collected

in a K×K matrix B — the so called blockmodel. For the purpose of identification, and unlike other

approaches to incorporating a time dimension in the MMSBM (e.g. Xing, Fu, and Song, 2010), we

do not allow the blockmodel to vary over time (for a discussion of the problem, see Matias and

Miele, 2017). That is, only node memberships into groups are allowed to differ across time periods.

We now turn to the description of the proposed model, dynMMSBM. We begin by modeling the

edge indicator Ypqt with a generalized linear model whose linear predictors consist of dyadic time-

varying covariates dpqt as well as a fixed effect specific to the interaction between two groups, to
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which node p and q belong. This group interaction fixed effect is represented by the corresponding

element of the blockmodel B. Thus, this part of the model is given by,

Ypqt ∼ Bernoulli

 K∏
g=1

K∏
h=1

θ
zp→q,t,g×wq←p,t,h
pqtgh


θpqtgh = g−1

(
Bgh + d>pqtγ

)
where Bgh is the (g, h)th element of the blockmodel, γ is a Jd-dimensional vector of coefficients,

and g(·) is the link function. In our application, we use the logistic link function. By including

a set of dyadic predictors dpqt, the dynMMSBM allows tie formation probabilities to be different

even for pairs of nodes that have instantiated the same latent groups at a given point in time.

In the dynMMSBM, each node has a time-specific probability of instantiating a group in any

given interaction. We model these mixed-membership probability vectors, denoted πpt, as a time-

specific mixture of M separate Dirichlet distributions with common concentration parameter ξ. We

also let the mean of each Dirichlet distribution depend on the set of time-varying nodal covariates

xpt through the Softmax function. This enables researchers to predict group memberships for

different nodes. Finally, we model the dynamic dimension of the social network by defining a first-

order hidden Markov model with M hidden states for the mixed-membership vectors. Thus, the

coefficients of the dyadic covariates in the mean of Dirichlet distribution are allowed to be different,

depending on which hidden state the corresponding time period is in.

Formally, we have,

zp→q,t ∼ Multinom(1,πpt)

wq←p,t ∼ Multinom(1,πqt)

πpt ∼
M∏
m=1

[P (stm)Dirichlet (SoftMax(βmxpt), ξ)]
stm

st ∼ Multinom(A>st−1)

s1 ∼ Multinom(λ, 1)

where stm = 1 when time period t is in hidden state m (and zero otherwise), βm is a K × Jx

matrix of state-specific coefficients (with β1 = 0 for identification purposes), A is an M × M ,

row-normalized matrix of state-transition probabilities, and λ is the M -dimensional vector of prior

probabilities over initial states.
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To complete the model, we specify the following prior distributions,

A>m ∼ Dirichlet(1, η)

Bgh ∼ N(µgh, σ
2
gh)

log(ξ) ∼ N(µξ, σ
2
ξ )

βk,m ∼ N(µβ, σ
2
βI)

γ ∼ N(µγ , σ
2
γI)

where Am is the mth row of A, η is the hyperprior concentration parameter of a symmetric Dirichlet

distribution, and µgh and σgh are hyperprior location and scale parameters for the intensity of

affinity between corresponding groups. We choose the values of location and scale hyperprior

parameters, µβ, µγ , µξ, σ
2
β, σ2γ and σ2ξ , to help regularize the model fit.

Thus, according to this model, the full joint distribution of data Y = {Yt}Tt=1, latent variables

Z = {zp→q,1, . . . , zp→q,T }p,q∈V, W = {wq←p,1, . . . ,wq←p,T }p,q∈V, Π = {πp1, . . . ,πpT }p∈V, S =

{st}Tt=1, and parameters {B,A, ξ,β,γ} is given by,

P (Y,Z,W,Π,S,B,A,β | X,D)

= P (s1)
T∏
t=2

P (st | st−1,A)
M∏
m=1

P (Am)
K∏
g=1

K∏
h=1

P (Bg,h)
T∏
t=1

P (Yt,Zt,Wt,Πt | st,B,βm,γ,Xt,Dt)

× P (γ)P (ξ)
M∏
m=1

K∏
k=1

P (βkm)

where

P (Yt,Zt,Wt,Πt | St,B,βm,γ,Xt,Dt)

=
∏
p,q∈Vt

P (Ypqt | zp→q,t,wq←p,t,B,γ,Dt)P (zp→q,t | πpt)P (wq←p,t | πqt)
∏
p∈Vt

M∏
m=1

P (πp,t | st,βm,xpt)stm

This framework can be adapted to handle undirected networks with only minor revisions. In

such cases, both the outcome matrix Yt and the blockmodel B will be symmetric, as the distinction

between a sender a receiver role becomes unnecessary. Accordingly, and to avoid redundancies,

products over pairs of nodes p, q ∈ Vt are now taken over pairs such that q > p at any given time.

Otherwise, the model definition remains identical.

3.2 Marginalization

As we discuss in the next section, we define a factorized approximation to the posterior distri-

bution of our model’s parameters in order to drastically reduce the computation time needed to
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learn about them. With the model as it currently stands, the approximating distribution would

factorize over all parameters. In the true posterior, however, latent variables zp→q,t (wq←p,t) and

the mixed-membership parameters πp (πq) are usually strongly dependent (Teh, Newman, and

Welling, 2007). Similarly, the Markov state indicators st and parameters in the transition kernel

A are normally strongly correlated in the true posterior. Therefore, and to improve the accuracy

of the approximation, we first marginalize the latent mixed-membership vectors and the Markov

transition probabilities, thus dealing with them exactly.

To do the marginalization, we first focus on the portion of the joint density that involves Π.

Define,

αptmk =
ξ exp(βkmxpt)
K∑
k′=1

exp(βk′mxpt)

= ξµk′m (1)

as the kth element of a K-dimensional vector that serves as the parameter of the Dirichlet distri-

bution from which mixed memberships are drawn. The term µptkm is therefore the expected prob-

ability that node p instantiates group k at time t under state m, and is such that
∑K

k=1 µptkm = 1.

In turn, parameter ξ > 0 controls the concentration of the Dirichlet distribution. Then, we can

marginalize Π as follows,∫
· · ·
∫ T∏

t=1

∏
p∈Vt

[∏
m

P (πpt | αptm)stm

] ∏
q∈Vt

P (zp→q,t|πpt)P (wp←q,t | πpt) dπ1t . . . dπNtt

=

T∏
t=1

∏
p∈Vt

M∏
m=1

[
Γ(ξ)

Γ(ξ + 2Nt)

K∏
k=1

Γ(αptmk + Cptk)

Γ(αptmk)

]stm
(2)

where Γ(·) is the Gamma function, and Cptk =
∑

q∈Vt(zp→q,t,k + wp←q,t,k) represents the number

of times node p instantiates group k across its interactions with all other nodes q present at time

t, whether as a sender or as a receiver. Note that we replace
∑K

k=1Cptk with 2Nt because all

nodes must instantiate exactly one group when interacting with other nodes at any given t—once

as a sender and once more as a receiver. In the undirected case, this term reduces to Nt (see

Appendix A.1).

Furthermore, the transition probabilities have independent Dirichlet priors, and they are con-

jugate to the multinomial distribution over states at any given time. Thus, we can adopt a similar

strategy when marginalizing over the rows of A. Specifically, we focus on the portion of the joint

distribution that involves A, and marginalize A as follows,∫
· · ·
∫ T∏

t=2

P (st | st−1,A)

M∏
m=1

P (Am) dA1 · · · dAM =

M∏
m=1

Γ(Mγ)

Γ(Mγ + Um)

M∏
n=1

Γ(γ + Umn)

Γ(γ)
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where Umn =
∑T

t=2 stnst−1,m is the number of times the Markov chain transitions from state m to

state n, and Um =
∑T

t=2

∑
n stnst−1,m is the total number of times the Markov chain transitions

from m (potentially to stay at m).

Putting all together, the marginalized posterior distribution is proportional to the following

joint density,

P (Z,W,S,B,β | X,D,Y)

∝ P (s1)
M∏
m=1

Γ(Mη)

Γ(Mη + Um)

M∏
n=1

Γ(η + Umn)

Γ(η)

T∏
t=2

M∏
m=1

∏
p∈Vt

[
Γ(ξ)

Γ(ξ + 2Nt)

K∏
k=1

Γ(αptmk + Cptk)

Γ(αptmk)

]stm
(3)

×
T∏
t=1

∏
p∈Vt

∏
q∈Vt

K∏
g=1

K∏
h=1

(
θ
Ypqt
pqtgh(1− θpqtgh)1−Ypqt

)zp→q,t,gwq←p,t,h
P (B)P (β)P (γ)P (ξ)

3.3 Estimation via Variational Approximation

For posterior inference, we rely on a mean-field variational approximation to the marginalized

posterior distribution (Jordan et al., 1999; Teh, Newman, and Welling, 2007). We first define a

factorized distribution of the latent variables Z, W and S as follows,

Q(S,Z,W | K,Φ,Ψ) =
T∏
t=1

Q1(st | κt)
∏
p∈Vt

∏
q∈Vt

Q2(zp→q,t | φp→q,t)Q2(wq←p,t | ψq←p,t)

where κt, φp→q,t, and ψq←p,t are variational parameters.

We use this factorized distribution to bound the log posterior from below. We then iterate

between finding an optimal Q̃ (the E-step) and optimizing the corresponding lower-bound with

respect to parameters B, β and γ (the M-step). Below, we provide a summary of the variational

EM algorithm. Appendix A.2 contains its complete derivation.

First, the variational update for the parameters in the distribution of Z is given by,

φ̂p→q,t,k ∝
M∏
m=1

[
exp
[
E
Q̃2

[log(αptmk + C ′ptk)]
]]κtm K∏

g=1

(
θ
Ypqt
pqtkg(1− θpqtkg)

1−Ypqt
)ψq←p,t,g

where C ′ptk = Cptk − zp→q,t,k and the expectation is taken over the variational distribution of

Z. This corresponds to the (unnormalized) probability vector in a multinomial distribution. By

symmetry, the update for ψq←p,t,k is similarly defined, and the two updates associated with a dyad

can be computed in parallel to speed up computation. Also in the interest of speed, and in order to

avoid costly computation of the Poisson-Bernoulli probability mass function, we approximate the

expections in these updates by using a zeroth-order Taylor series expansion, so that E
Q̃2

[log(αptmk+

C ′ptk)] ≈ log
(
αptmk + E

Q̃2

[
C ′ptk

])
(Asuncion et al., 2009).
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In turn, for t = 2, . . . , T − 1, the variational updates for the parameters of S are given by,

κ̂tm ∝ exp
[
−E

Q̃1
[log(Mη + U ′m)]

]
exp

[
κt+1,mκt−1,m E

Q̃1
[log(η + U ′mm + 1)]

]
× exp

[
(κt−1,m − κt−1,mκt+1,m + κt+1,m) E

Q̃1
[log(η + U ′mm)]

]
×
∏
n6=m

exp
[
κt+1,n E

Q̃1
[log(η + U ′mn)]

] ∏
n6=m

exp
[
κt−1,n E

Q̃1
[log(η + U ′nm)]

]

×
∏
p∈Vt

[
Γ(ξ)

Γ(ξ + 2Nt)

K∏
k=1

E
Q̃1

[Γ(αptmk + Cptk)]

Γ(αptmk)

]

where U ′m = Um − st,m and U ′mn = Umn − stmst+1,n.1 Once again, this corresponds to the (unnor-

malized) probability vector in a multinomial distribution. Finally, note that there are special cases

for updates at the first and last time periods, i.e., t = 1 and t = T . Their details are available in

Appendix A.2.

Finally, to obtain the estimates of the regression parameters β, γ and the blockmodel B,

as well as estimates of the concentration parameter ξ, we find optimal values with respect to

the approximate lower bound, defined as the log expectation of equation (3) over the variational

distribution. The resulting product-of-multinomials form of Q̃ (which relied only on a factorizing

assumption), allows us to compute the necessary expectations. To find optimal values, we use an

iterative quasi-Newton algorithm, and provide the gradients required for this step in Appendix A.2.

4 Empirical Analysis

We apply the proposed dynMMSBM to the interstate conflict network data described in Section 2.

We use the open-source statistical software NetMix to fit the model. As shown below, the dyn-

MMSBM recovers the essential geopolitical coalitions that drive conflict patterns and generates

novel insights into the heterogeneous effect of key covariates, like democracy. It also outperforms

the standard logistic regression model in forecasting future conflicts.

4.1 Specification

We model conflict as an undirected network in which ties arise from states’ evolving membership

in four latent groups. While the substantive results presented below are not conditional on the

number of latent groups, we found that four provided sufficient flexibility to reflect different types

of coalitions that can be qualitatively interpreted while avoiding near-empty groups. We include

in xt two node-level covariates, the degree of democracy in a state’s domestic government and the

1This definition of the term U ′mn is valid whenever m 6= n and t 6= T . For other cases, see Appendix A.2.
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state’s military capability, that are hypothesized to influence membership in these groups (Maoz

and Russett, 1993; Hegre, 2008). The degree to which these covariates are associated with latent

group memberships depends on two hidden Markov states. In addition, we include four dyadic

predictors — geographic distance, the presence of a shared border, alliance ties, and the existence

of a defense pact — that are expected to directly affect the probability of conflict among state

dyads (Gleditsch, 1995; Huth, 2009; Leeds, 2003). These variables form dt in the model.

We measure levels of democracy using the variable POLITY, from the Polity IV dataset (Marshall,

Gurr, and Jaggers, 2017). States are assigned a polity score each year ranging from −10 to 10,

with higher values representing more democratic political institutions. The mean polity score

in our sample is −0.05. Five percent of state years are assigned the minimum score of −10, and

16.6% receive the maximum of 10. We also include a measure of states’ national military capability

(MILITARY CAPABILITY) as a monadic covariate. We use version 5.0 of the composite index (CINC

scores) originally developed by Singer, S. Bremer, and Stuckey (1972), and take the log to mitigate

the skewed distribution. These variables enter the model as monadic predictors that influence the

process of group formation.

Our analysis further incorporates several dyadic variables that are expected to be predictive

of conflict between states beyond the effects of the equivalence classes induced by the blockmodel.

These include dichotomous indicators for the existence of a formal alliance (ALLIANCE) and defense

pact (DEFENSE PACT) between states in a given year; data comes from version 4.1 of the COW

Formal Alliances dataset (Gibler, 2009). In addition, we control for geographic distance (DISTANCE)

and the presence of a contiguous border (BORDER) between states (Stinnett et al., 2002). Following

the convention in the literature, a count of years since the last militarized dispute between each

dyad and a cubic spline control for temporal dependencies (Beck, Katz, and Tucker, 1998).

4.2 Results

4.2.1 Conflict propensities of latent groups

Figure 1 graphically summarizes the resulting blockmodel where the width of the edge is propor-

tional to the estimated probability of conflict between groups. If an edge originates from one node

and ends up in the same node, it represents the estimated probability of conflict with other coun-

tries in the same group. The exact estimates of the blockmodel, on which this figure is based, are

available in Table 2 of Appendix A.4. In the figure, the node size is proportional to the estimated

frequency with which states instantiate membership in each group,
∑T

t=1

∑
p∈Vt πpt,g.

12



Edge Formation across Clusters

Group 1

Group 2

Group 3

Group 4

Figure 1: Network Graph of Edge Formation Probabilities. The nodes (circles) in the figure
represent the four latent groups. Node size reflects the frequency with which states instantiate
membership in each group. Weighted edges (lines) represent the probability of conflict between
groups.

The results reveal that a single latent group, Group 2, is responsible for the predominant share

of conflict among states. States in Group 2 engage each other in militarized disputes at a very

high rate (probability 0.594 on average), and these states also frequently enter conflicts with other

groups. Examples of node-years with the highest membership in Group 2 are the United States in

1938 and the Soviet Union in 1937 — two states poised to engage in a large number of MIDs at

the onset of World War II. Group 2 also has the smallest estimated membership; nodes instantiate

membership in this group 19.8% of the time. This is substantially lower than the corresponding

rates of the other blocks: for Groups 1, 3, and 4, the rates are 25.7%, 26%, and 28.5%, respectively.

Unlike Group 2, the other three groups are comparatively peaceful. States in these groups rarely

fight among themselves (see diagonal estimates of Table 2) or with each other (off-diagonal). Group

4 has the lowest probability of intra-group conflict, at 0.02%. As we discuss below, states with

democratic political systems are more likely to instantiate Group 4 than any other group.

Figure 2 shows the relationship between membership in the most conflictual group (Group 2)

and overall conflict rates over time. The black line depicts the estimated average probability of

membership in Group 2 for each year. There is significant variation over time. Group 2 membership

spikes in the run up to WWI and WWII, corresponding to sharp increases in the rate of militarized

dispute onset (red line). Membership in this group declines in the post-war period, which is

13
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Figure 2: Group 2 Membership vs. Conflict Rate. The black line depicts the average
probability of state membership in Group 2 over time. The red line shows the observed rate of
conflict in each year. The World Wars are depicted via gray bars.

characterized by low rates of conflict.

4.2.2 Memberships of latent groups

The dynMMSBM allows us to examine latent group membership at the node, year, and node-year

level. Figure 3 displays average group membership by year for a select group of states. As the

figure demonstrates, group membership can shift markedly from one year to the next, particularly

in response to instances of conflict. The Russian Federation, for example, shows notable increases

in Group 2 membership during the outbreak of World War I and World War II, when the country

experienced MIDs with a large number of adversaries.

Differences across states are also apparent in Figure 3. Costa Rica and Switzerland, states

that have largely avoided conflict by adhering to a foreign policy of neutrality, are less prone to

membership in Group 2 compared to great powers like the United States, Russia, and China.

The liberal democracies pictured (the United States, Switzerland, and Costa Rica) tend to have

higher membership in Group 4, while autocratic states like Russia and China tend to instantiate

membership in Group 1.
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Figure 3: Average Node Membership over Time, Select States. The figure shows, for six
states, the average rate of membership in four latent groups in each year the state is present in the
network.

To probe the plausibility of the estimated group assignments, we examine latent group mem-

bership during the Cold War. As noted earlier, the Cold War period was defined by a geopolitical

rivalry between an Eastern bloc, led by the Soviet Union, and a Western bloc led by the United

States and its NATO allies. While these dueling coalitions did not frequently engage in direct

conflict, they are believed to have shaped conflict patterns for much of the post-War era. To see if

the dynMMSBM can recover the underlying geopolitical structure of the Cold War era, we identify

the 25 states with the highest average membership probability in each latent group during the

period of 1955–1990. For each latent group g, we calculate the following quantity for every state p:

1
35

∑1990
t=1955 πptg. The states with the highest membership in each latent group are listed in Table 3

of Appendix A.4.

The distribution of states across the latent groups is consistent with presence of competing

geopolitical coalitions during the Cold War. Group 1 features several members of the Warsaw Pact

(Russia/Soviet Union, Hungary, and Romania), the defining alliance in the Eastern bloc. Soviet-

leaning states such as North Korea, Syria, and Algeria also had higher membership in this group.

Group 4, on the other hand, is populated largely by the United States, its NATO allies (Australia,

Germany, Denmark, Belgium, Italy, New Zealand), and several of the neutral European states that

leaned toward the Western bloc (Finland, Austria, Sweden).
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Monadic Variable Group 1 Group 2 Group 3 Group 4

INTERCEPT 0.000 -0.100 0.018 0.080
POLITY 0.000 0.002 0.004 0.010
MILITARY CAPABILITY 0.000 0.014 0.000 -0.005

Dyadic Variable Coefficient

DISTANCE -0.169
BORDERS 0.549
ALLIANCE 0.833
DEFENSE PACT 0.613
PEACE YRS -0.114

Table 1: Estimated Coefficients, Interstate Conflict Network. The table shows the coef-
ficients associated with the two monadic predictors for each of four latent groups, as well as the
coefficients for the dyadic predictors. Cubic splines not shown.

The composition of these two groups, in addition to the blockmodel shown in Figure 1, provides

further evidence that the model is recovering the essential conflict patterns of the Cold War era.

States in Groups 1 (Eastern Bloc) and 4 (Western Bloc) have a low probability of conflict with

each other. Both, however, tend to engage in conflict with Group 2 at high rates. Glancing

at the composition of Group 2 (the second column of Table 3), we see many of the contested

areas that experienced “proxy wars” between the two major geopolitical coalitions. Afghanistan,

Cambodia, Chile, Yugoslavia, Bangladesh, Chad, Equatorial Guinea were violent flashpoints in the

Cold War as the Eastern and Western blocs competed for influence. The elevated rate of between

Group 2 states and those in Groups 1 and 4 reflects intervention by the Eastern and Western bloc,

respectively, in these states.

4.2.3 Other characterization of latent groups

Examining the covariate relations can also helps characterize the nature of each latent group.

Table 1 displays coefficient estimates for the monadic covariates POLITY and MILITARY CAPABILITY.

The estimates represent the effect of each covariate on the log-odds of membership in each latent

group relative to Group 1. We display the coefficients only for Markov state 1, since almost the

entire time period, i.e., 97.2%, is estimated to derive from this state. Compared to the baseline

(Group 1), more democratic states (i.e., those with high POLITY scores) are most likely to instantiate

membership in Group 4. This is consistent with the interpretation of Group 4 as the Western

alliance of liberal democracies during the Cold War. The positive coefficient on POLITY also offers

some evidence in support of the democratic peace theory: democracies are more likely to join

Group 4, which has the lowest rate of intra-group conflict of any of the latent groups. This pattern
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is consistent with a separate peace among democracies. Autocratic states, on the other hand,

tend to sort into Group 1. Greater military capability is positively associated with membership in

Group 2 and negatively associated with membership in Group 4.

In addition to the coefficients, we can also predict how the probability of edge formation changes

as a node’s monadic covariates shift. In the generative process of the model, group memberships

are instantiated for each dyad in each time period. As a result, states in the conflict network

are assigned a latent group each time they interact with another state in each year. Because the

probability of edge formation depends on the group membership of both nodes in a dyad, a change

in one node’s monadic predictor will yield heterogeneous effects for each dyad-year.

For example, consider the prediction of conflict propensity when each node’s Polity score is

greater by one standard deviation (7.14) than what is actually observed.2 The overall average

effect of this change on the probability of edge formation, calculated as

1

T

T∑
t=1

1

|Vt × Vt|
∑
p,q∈Vt

[E[Ypqt|POLITY + 7.14]− E[Ypqt]]

is positive but negligible in size (0.0009). However, there is significant heterogeneity in the effect

across states and over time. Figure 4 shows, for each state, the average difference in the probability

of interstate conflict due to an increase in POLITY score. Some states such as Poland, Ethiopia, and

Cuba are predicted to be more peaceful, on average, if they are more democratic. Others, however,

actually are estimated to be more conflict-prone in this scenario. These include some of the most

powerful states in the system (e.g., Germany, Russia, and the United Kingdom).

The effect of democracy varies due to the latent group structure of the model. In general, shifts

in monadic predictors will generate effects that are non-linear and contingent upon the existing

group membership of the node in question and other nodes in the network. Figure 5 looks within

states to gauge the effect of the shift in POLITY over time, revealing additional heterogeneity. The

figure also reveals a clear trend over time that shows attenuation of the effect of democracy on the

average probability of a tie.

4.2.4 Dyadic covariates

Dyadic predictors operate outside the latent group membership structure, directly influencing the

probability of conflict among states. The dyadic coefficient estimates are shown in Table 1. Con-

sistent with existing work, greater geographic distance between states tends to depress conflict, as

2During this exercise, we allow POLITY scores to increase up to the maximum value (10).
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● Albania
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● China
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● Japan
● France
● Chile
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● Brazil
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● Thailand
● Sweden
● Greece
● Netherlands
● Paraguay

● Romania
● Liberia

● Spain
● Iran (Islamic Republic of)
● Bulgaria
● Denmark
● Turkey
● Russian Federation
● United States of America
● Argentina
● Morocco
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Figure 4: Effect of Shift in Polity by State. The figure shows the estimated change in the
probability of interstate conflict for each state when its POLITY score is increased by one standard
deviation (7.14) from its observed value.
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Figure 5: Effect of Shift in Polity over Time, Select States. The figure shows the estimated
change in the probability of interstate conflict over time if a state’s POLITY score is increased by
one standard deviation (7.14) from its observed value.

does the length of time since two states have engaged in a militarized dispute. Sharing a border in-

crease the likelihood of conflict. Somewhat surprisingly, militarized disputes are more likely among

states that share an alliance or defense pact.

5 Conclusion

We have introduced the dynMMSBM, a generalization of the mixed-membership stochastic block-

model that incorporates dyadic and nodal attributes, and accounts for episodic temporal evolution

of networks using a hidden-Markov process. The proposed model enables researchers to evaluate

dynamic theories about the role of individual characteristics on the generation of relational out-

comes when abstract groups of actors are the driving force behind tie formations. The dynMMSBM

also helps identify “epochs” or periods in time when a network exhibits distinctive patterns of in-

teractions among actors.

Using a network defined by 200 years of militarized interstate disputes in the international
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system, our model uncovers previously understudied spatial and temporal heterogeneity in the so

called “democratic peace,” whereby regime type is expected to affect the likelihood that any two

countries engage in militarized actions against each other. Our model also uncovers the evolving

nature of unobserved geopolitical coalitions, with memberships that conform to typical expectations

— with liberal democracies democracies aligned in one bloc, and more authoritarian regimes aligned

in another. The dynMMSBM also reveals more nuanced structures, like blocs of states where proxy

conflicts were fought during the Cold War period.

The main goal of this paper is to provide applied researchers with a model that can accom-

modate a variety of theorized relationships for dynamic network outcomes that display some form

of stochastic equivalence. To this end, we make available an open-source software package that

implements the dynMMSBM. In future, we plan to further extend the dynMMSBM’s applicability

to a variety of outcome variable types. Similarly, and given their prevalence in social scientific

research, we plan to extend the model to accommodate bipartite or affiliation networks.
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A Appendix

A.1 Marginalizing the membership vectors and the transition probabilities

In this appendix, we show how to marginalize Π.∫
· · ·
∫ T∏

t=1

∏
p∈Vt

[
M∏
m=1

P (πpt | αptm)stm

] ∏
q∈Vt

P (zp→q,t | πpt)P (wp←q,t|πpt) dπ1 . . . dπNt

=
T∏
t=1

∏
p∈Vt

∫ M∏
m=1

[P (πpt | αptm)]stm
∏
q∈Vt

P (zp→q,t | πpt)P (wp←q,t|πpt) dπpt

=

T∏
t=1

∏
p∈Vt

∫ M∏
m=1

[
Γ(ξ)∏K

k=1 Γ(αptmk)

K∏
k=1

π
αptmk−1
ptg

]stm ∏
q∈Vt

K∏
k=1

π
zp→q,t,k
ptk π

wp←q,t,k
ptk dπpt

=
T∏
t=1

∏
p∈Vt

M∏
m=1

 Γ(ξ)∏K
k=1 Γ(αptmk)

∫ K∏
k=1

π
αptmk−1
ptk

∏
q∈Vt

K∏
k=1

π
zp→q,t,k
ptk π

wp←q,t,k
ptk dπpt

stm
As they share a common base, we can simplify the products and define Cptk =

∑
q∈Vt(zp→q,t,k +

wp←q,t,k) to show that the above equation is equivalent to,

T∏
t=1

∏
p∈Vt

M∏
m=1

[
Γ(ξ)∏K

k=1 Γ(αptmk)

∫ K∏
k=1

π
αptmk+Cptk−1
ptk dπpt

]stm
The integrand can be recognized as the kernel of a Dirichlet distribution. As the integral is over

the entire support of this Dirichlet, we can easily compute it as the inverse of the corresponding

nomalizing constant,

T∏
t=1

∏
p∈Vt

M∏
m=1

[
Γ(ξ)∏K

k=1 Γ(αptmk)

∏
k Γ(αptmg + Cptk)

Γ(ξ + 2Nt))

]stm
where the sum of Cptk over groups k is equal to twice the number of nodes (as nodes must instantiate

at least one group in each of interactions, once as a sender and once again as a receiver) in directed

networks. A simple reorganization of factors yields equation (2) in Section 3.2.

A.2 Details of the Variational EM Algorithm

A.2.1 E-step

E-step 1: Z and W

To obtain the updates of the φp→q,t variational parameters, we begin by restricting equation (3)

to the terms that depend only on zp→q,t (for specific p and q nodes in Vt) and taking the logarithm

of the resulting expression,

logP (Y,Z,W,S,B,β,γ | X,D)

21



= zp→q,t,k

K∑
g=1

wq←p,t,g {Ypqt log(θpqtkh) + (1− Ypqt) log(1− θpqtkh)}

+

M∑
m=1

stm log Γ(αptmk + Cptg) + const.

Now, note that Cptk = C ′ptk + zp→q,t,g and that, for x ∈ {0, 1}, Γ(y + x) = yxΓ(y). Since the

zp→q,t,k ∈ {0, 1}, we can re-express log Γ(αptmk + Cptk) = zp→q,t,k log(αptmk + C ′ptk) + log Γ(αptmk)

and thus simplify the expression to,

zp→q,t,k

K∑
g=1

wq←p,t,g {Ypqt log(θpqtkg) + (1− Ypqt) log(1− θpqtkg)}

+ zp→q,t,k

M∑
m=1

stm log
(
αptmk + C ′ptk

)
+ const.

We proceed by taking the expectation under the variational distribution Q̃:

E
Q̃
{logP (Y,Z,W, s,B,β,γ | D,X)}

= zp→q,t,g

K∑
g=1

E
Q̃2

(wq←p,t,g)
(
Ypqt log(θpqtkg) + (1− Ypqt) log(1− θpqtkg)

)
+ zp→q,t,g

M∑
m=1

E
Q̃1

(stm) E
Q̃2

{
log
(
αptmk + C ′ptk

)}
+ const.

The exponential of this expression corresponds to the parameter vector of a multinomial distribution

Q̃2(zp→q,t | φp→q,t). The update for wq←q,t is similarly derived.

E-step 2: S

Isolating terms in Equation 3 that are not constant with respect to stm for a specific t 6= 1 and m,

and rolling all other terms into a const., we have,

P (Y,Z,W, s,B,β,γ | D,X) = Γ(Mη + Um)−1
M∏
n=1

Γ(η + Umn)

M∏
m′ 6=m

Γ(η + Um′m)

×
∏
p∈Vt

[
Γ(ξ)

Γ(ξ + 2Nt)

K∏
k=1

Γ(αptmk + Cptk)

Γ(αptmk)

]stm
+ const.

To isolate terms that depend on stm for specific t and m, first define U ′m = Um − stm and

U ′mn =



Umn − stmst+1,n if m 6= n and t 6= T , or m = n and t = 1

Umn if m 6= n and t = T

Umn − stmst+1,n − st−1,mstn if m = n and 1 < t < T

Umn − st−1,mstn if m = n and t = T

22



Focusing on the terms involving Um and Umn, and working on a typical case in which 1 < t < T , we

can isolate parts that do not depend on stm by again recalling that, for x ∈ {0, 1}, Γ(y+x) = yxΓ(y):

Γ
(
Mη + stm + U ′m

)−1
Γ(η + st+1,mstm + st−1,mstm + U ′mm)

×
M∏
n6=m

Γ(η + st+1,nstm + U ′mn)Γ(η + stmst−1,n + U ′nm)

= (Mη + U ′m)−stmΓ(Mη + U ′m)−1
{

(η + U ′mm + 1)st+1,mst−1,m(η + U ′mm)st−1,m−st−1,mst+1,m+st+1,m
}stm

× Γ(η + U ′mm)
M∏
n6=m

(η + U ′mn)st+1,nstmΓ(η + U ′mn)
M∏
n 6=m

(η + U ′nm)stmst−1,nΓ(η + U ′nm)

at which point all Γ(·) terms are constant with respect to stm and can be rolled into the normalizing

constant so that

P (Y,Z,S,B,β,γ | D,X)

= (Mη + U ′m)−stm
{

(η + U ′mm + 1)st+1,mst−1,m(η + U ′mm)st−1,m−st−1,mst+1,m+st+1,m
}stm

×
M∏
n6=m

(η + U ′mn)st+1,nstm(η + U ′nm)stmst−1,n
∏
p∈Vt

[
Γ(ξ)

Γ(ξ + 2Nt)

K∏
k=1

Γ(αptmk + Cptk)

Γ(αptmk)

]stm
+ const.

Taking the logarithm and expectations under the variational distribution Q̃ with respect tto all

variables other than stm, we have,

− stm EQ̃1
[log(Mη + U ′m)] + stmκt+1,mκt−1,m EQ̃1

[log(η + U ′mm + 1)]

+ stm(κt−1,m − κt−1,mκt+1,m + κt+1,m) EQ̃1
[log(η + U ′mm)] + stm

M∑
n6=m

κt+1,n EQ̃1
[log(η + U ′mn)]

+ stm

M∑
n6=m

κt−1,n EQ̃1
[log(η + U ′nm)] + stm

∑
p∈Vt

log

[
Γ(ξ)

Γ(ξ + 2Nt)

]

+ stm
∑
p∈Vt

K∑
k=1

EQ̃

[
log

[
Γ(αptmk + Cptk)

Γ(αptmk)

]]
+ const.

This corresponds to a multinomial distribution Q̃1(st|κtm), such that the mth element of its pa-

rameter vector is

κ̂tm ∝ exp
[
−E

Q̃1
[log(Mη + U ′m)]

]
exp

[
κt+1,mκt−1,m E

Q̃1
[log(η + U ′mm + 1)]

]
× exp

[
(κt−1,m − κt−1,mκt+1,m + κt+1,m) E

Q̃1
[log(η + U ′mm)]

] ∏
n6=m

exp
[
κt+1,n E

Q̃1
[log(η + U ′mn)]

]

×
∏
n6=m

exp
[
κt−1,n E

Q̃1
[log(η + U ′nm)]

] ∏
p∈Vt

[
Γ(ξ)

Γ(ξ + 2Nt)

K∏
k=1

E
Q̃1

[Γ(αptmk + Cptk)]

Γ(αptmk)

]
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which has to be normalized so that it sums to one. When t = T , the term simplifies to,

κ̂Tm ∝ exp
[
−EQ̃1

[log(Mη + U ′m)]
] M∏
n=1

exp
[
κT−1,m E

Q̃1
[log(η + U ′nm)]

]
×
∏
p∈VT

[
Γ(ξ)

Γ(ξ + 2NT )

K∏
k=1

E
Q̃1

[Γ(αpTmk + CpTk)]

Γ(αpTmk)

]

Finally, when t = 1, the term is given by,

κ̂1m ∝ exp
[
−EQ̃1

[log(Mη + U ′m)]
] M∏
n=1

exp
[
κ2n EQ̃1

[log(η + U ′mn)]
]

×
∏
p∈V2

[
Γ(ξ)

Γ(ξ + 2N1)

K∏
k=1

E
Q̃1

[Γ(αp1mk + Cp1k)]

Γ(αp1mk)

]

A.2.2 M-step

Lower Bound

We first provide the expression for the lower bound,

L(Q̃) = E
Q̃

[logP (Y,Z,W, s,B,β | X)]− E
Q̃

[log Q̃(s,Z,W | K,Φ,Ψ)]

= log(P (s1)) + log Γ(Mη)−
M∑
m=1

E
Q̃

[log Γ(Mη + Um)] +

M∑
m=1

M∑
n=1

E
Q̃

[log Γ(η + Umn)]− log Γ(η)

+

T∑
t=1

M∑
m=1

κtm
∑
p∈Vt

log Γ (ξ)−
T∑
t=1

M∑
m=1

κtm
∑
p∈Vt

log Γ (ξ + 2Nt)

+
T∑
t=1

M∑
m=1

κtm
∑
p∈Vt

K∑
k=1

E[log Γ(αptmk + Cptk)]−
T∑
t=1

M∑
m=1

κtm
∑
p∈Vt

log Γ(αptmk)

+
T∑
t=1

∑
p∈Vt

∑
q∈Vt

K∑
g=1

K∑
h=1

φp→q,t,gψq←p,t,h {Ypqt log θpqtgh + (1− Ypqt) log(1− θpqtgh)}

−
K∑
g=1

K∑
h=1

(Bgh − µgh)2

2σ2gh
−

Jd∑
j=1

(γj − µγ)2

2σ2γ
−

M∑
m=1

K∑
k=1

Jx∑
j=1

(βmkj − µβ)2

2σ2β
− log ξ

σ2ξ
− log ξ

−
T∑
t=1

M∑
m=1

κtm log κtm −
T∑
t=1

M∑
m=1

∑
p∈Vt

∑
q∈Vt

K∑
k=1

{φp→q,t,k log φp→q,t,k − ψq←p,t,h log(ψq←p,t,k)}

M-step 1: update for B

Restricting the lower bound to terms that contain Bgh, we obtain

L(Q̃) =

T∑
t=1

∑
p∈Vt

∑
q∈Vt

K∑
g,h=1

φp→q,t,gψq←p,t,h{Ypqt log θpqtgh + (1− Ypqt) log(1− θpqtgh)}
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−
K∑
g=1

K∑
h=1

(Bgh − µgh)2

2σ2gh
+ const.

We optimize this lower bound with respect to Bgh using a gradient-based numerical optimization

method. The corresponding gradient is given by,

∂LBgh
∂Bgh

=

T∑
t=1

∑
p∈Vt

∑
q∈Vt

φp→q,t,gψq←p,t,h (Ypqt − θpqtgh)−
Bgh − µBgh

σ2Bgh

M-step 2: update for γ

Restricting the lower bound to terms that contain γ, and recalling that θpqtgh = [1 + exp(−Bgh −

dpqtγ)]−1, we have

L(Q̃) =
T∑
t=1

∑
p∈Vt

∑
q∈Vt

K∑
g=1

K∑
h=1

φp→q,t,gψq←p,t,h {Ypqt log θpqtgh + (1− Ypqt) log(1− θpqtgh)}

−
Jd∑
j

(γj − µγ)2

2σ2γ
+ const.

To optimize this expression with respect to γj (the jth element of the γ vector), we again use a

numerical optimization algorithm based on the following gradient,

∂L(Q̃)

γj
=

T∑
t=1

∑
p∈Vt

∑
q∈Vt

K∑
g=1

K∑
h=1

φp→q,t,gψq←p,t,hdpqtj (Ypqt − θpqtgh)− γj − µγ
σ2γ

M-step 3: update for βm

Recall that αptmk = ξµptkm, where the mean µptkm =
exp(xptβkm)∑
k′ exp(xptβk′ ,m) and ξ > 0 is a concentration

parameter. To find the optimal value of βmk, we first impose β1m ≡ 0 ∀m for identification

purposes and restrict the lower bound to terms involving the remaining βmk:

L(Q̃) =

T∑
t=1

M∑
m=1

κtm
∑
p∈Vt

K∑
k=1

[
E
Q̃2

[log Γ(αptmk + Cptk)]− log Γ(αptmk)
]
−

M∑
m=1

Jx∑
j=1

(βmkj − µβ)2

2σ2β
+ const.

which we can optimize with respect to βmkj — the jth element of the βmk coefficient vector. No

closed form solution exists for the maximum of L(Q̃)βm , but a gradient-based algorithm can be

implemented to maximize it. The corresponding gradient with respect to each element of βmk is

given by,

∂L(Q̃)

∂βmkj
=

T∑
t=1

κtm
∑
p∈Vt

αptmkxptr1∑K
k′=1 exp(xptβk′m)
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×
∑
g 6=k

exp(xptβmg)
(
ψ̆(αptmg)− E

Q̃2
[ψ̆(αptmg + Cptg)]

+ E
Q̃2

[ψ̆(αptmk + Cptk)]− ψ̆(αptmk)
)
−
βmkj − µβ

σ2β

where ψ̆(·) is the digamma function. Once again, we can approximate expectations of non-linear

functions of random variables using a zeroth-order Taylor series expansion. As is the case of

the multinomial logit model, we set β1,m ≡ 0 ∀m, making group 1 a reference for identification

purposes.

M-step 4: update for ξ

Finally, the update for concentration parameter ξ is given by an optimization of the lower bound,

L(Q̃) =

T∑
t=1

M∑
m=1

κt,m
∑
p∈Vt

log Γ (ξ)−
T∑
t=1

M∑
m=1

κtm
∑
p∈Vt

log Γ (ξ + 2Nt)

+
T∑
t=1

M∑
m=1

κtm
∑
p∈Vt

K∑
k=1

EQ̃2
[log Γ(αptmk + Cptk)]− log Γ(αptmk)−

(ξ − µξ)2

2σ2ξ
+ const.

using the corresponding gradient, defined by

∂L
∂ξ

=
T∑
t=1

M∑
m=1

κtm

{
ψ̆(ξ)− ψ̆(ξ + 2Nt)

}
+

T∑
t=1

M∑
m=1

κtm
∑
p∈Vt

K∑
k=1

exp(xptβk,m)∑K
k′=1 exp(xptβk′,m)

{
EQ̃2

[ψ̆(αptmk − Cptk)]− ψ̆(αptmk)
}

A.3 Initial values for φ and ψ

Implementation of the dynamic model requires defining good starting values for the mixed-membership

vectors. While k-means offers good starting values for φ and ψ in the non-dynamic setting, applying

it to sociomatrices at different time points introduces a type of identification problem commonly

known as label switching : P (Ypqt | zp→q,t,g, wq←p,t,h) = P (Ypqt | zp→q,t,τg , wq←p,t,τh), where τ is a

permutation of 1, . . . ,K. When applying k-means to each time period, label switching forces us to

ask: is a node assigned to a different group at two different times because its membership changes,

or because the algorithm settled on an alternative permutation of the group labels? Answering

this question requires resolving the label ambiguity problem.

To do so, define a simple approximation to the blockmodel B at a given time period t,

B̃τt
gh =

∑
p∈Vt

∑
q∈Vt Ypqtφp→q,t,gψq←p,t,h∑

p∈Vt
∑

q∈Vt φp→q,t,gψq←p,t,h
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which depends on group assignments, and is therefore permutation-specific. Since we have assumed

that the blockmodel B is time-invariant, these approximations should coincide, in expectation,

across time periods — provided their labels are not scrambled. Accordingly, we can unscramble

permuted approximations to the blockmodel by finding, for each time period, the permutation that

minimizes the difference between each element of B̃τt and the corresponding element of B.

For an initial (potentially scrambled) set of node allocations to groups in each time period t,

Stephens (2000) proposes the following EM-style iterative algorithm to solve the above optimization

problem:

1. Find the B′gh that minimize
∑T

t=1

∑K
g=1

∑K
h=1 B̃

τt
gh log

(
B̃
τt
gh

B′gh

)

2. For t = 1, . . . , T , find τt that minimizes
∑K

g=1

∑K
h=1 B̃

τt
gh log

(
B̃
τt
gh

B′gh

)
repeating steps 1 and 2 until convergence.

The argmin of step 1 is given by B′gh = 1
TB

τt
gh — the average blockmodel across time periods.

While the solution for step 2 can be found by examining all K! full permutations, a more effi-

cient approach takes advantage of the fact that step 2 is equivalent to the assignment problem in

combinatorial optimization, and uses integer programming techniques (viz. the so-called Hungar-

ian algorithm) to find a solution without having to test all permutations (see Stephens, 2000, for

details).

A.4 Additional Empirical Results

Group 1 Group 2 Group 3 Group 4

Group 1 0.0003 0.0010 0.0001 0.0001

Group 2 0.0010 0.5940 0.0004 0.0004

Group 3 0.0001 0.0004 0.0003 0.0001

Group 4 0.0001 0.0004 0.0001 0.0002

Table 2: Group-Level Edge Formation Probabilities. The table displays the probability of

interstate conflict between nodes that instantiate membership in each of four latent groups. The

diagonal shows rates of intra-group conflict and off-diagonal shows rates of conflict between groups.
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Group 1 Group 2 Group 3 Group 4

0.296 Gabon 0.318 Qatar 0.302 Germany 0.326 Finland

0.293 Syria 0.301 Comoros 0.299 Namibia 0.323 Jamaica

0.288 UAE 0.298 Chile 0.296 Yemen 0.322 Mauritius

0.288 Togo 0.287 Papua New Guinea 0.292 Gabon 0.320 Switzerland

0.287 Ghana 0.263 China 0.290 Syria 0.319 Australia

0.287 Ethiopia 0.259 Fiji 0.286 Ghana 0.318 Germany

0.287 Guinea Bissau 0.255 Mexico 0.284 Togo 0.316 Trinidad-Tobago

0.284 Romania 0.252 Chad 0.284 Ethiopia 0.315 Namibia

0.283 Malawi 0.249 Bangladesh 0.283 Laos 0.315 Gambia

0.282 Guinea 0.248 Norway 0.283 Pakistan 0.314 Denmark

0.282 Bhutan 0.247 Costa Rica 0.283 Myanmar 0.311 Austria

0.282 Angola 0.244 Iran 0.281 UAE 0.310 Botswana

0.282 Myanmar 0.242 Lesotho 0.280 Zimbabwe 0.310 Sweden

0.282 Djibouti 0.236 Cambodia 0.280 Dominican Repub 0.309 Sri Lanka

0.280 Taiwan 0.235 Yugoslavia 0.280 Finland 0.309 Zimbabwe

0.290 Pakistan 0.234 Peru 0.280 Romania 0.307 United States

0.280 North Korea 0.231 Saudi Arabia 0.279 Angola 0.307 Belgium

0.280 Laos 0.230 Madagascar 0.279 Taiwan 0.307 Gabon

0.278 Algeria 0.227 Bahrain 0.279 Guinea Bissau 0.306 Dominican Repub

0.278 Haiti 0.226 Equatorial Guinea 0.278 Guinea 0.306 Pakistan

0.278 Hungary 0.222 Afghanistan 0.278 Australia 0.306 Laos

0.277 Russia 0.222 Guyana 0.277 North Korea 0.305 Uruguay

0.277 Kuwait 0.221 Solomon Islands 0.277 Jamaica 0.305 Ghana

0.277 Oman 0.220 Nepal 0.276 Mauritius 0.305 Italy

0.277 Burundi 0.219 Zambia 0.276 Sierra Leone 0.305 New Zealand

Table 3: States with Highest Membership in Latent Groups, Cold War period. To

identify the states with highest membership in each latent group, we average over each states’

latent membership probabilities in the years 1955-1990. Average group membership is reported

beside the state name for the top 25 states in each latent group. The group assignments are

consistent with known geopolitical coalitions in the Cold War, with Eastern bloc countries in

Group 1, Western allies clustered in Group 4, and states that experienced proxy wars in Group 2.
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